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What Is a Cheatgrass Die-off?

Cheatgrass die-off is caused by emergence failure of
this annual grass in an area previously occupied by a
dense cheatgrass monoculture.

Die-offs vary in size from a few hundred square feet to
many hundreds of acres.

Large die-offs are areas of management concern
because of forage loss and potential for erosion.



Die-offs Are Usually Transient

Lost Dog Study Site, Skull Valley, Utah



Can Cheatgrass Establish into Die-offs?
Yes.
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Cheatgrass emergence and survival from planted seeds were
similar in die-off areas and adjacent intact stands.
From Joshua Nicholson, MS thesis, Brigham Young University,
2014



Can Native Plants Establish into Die-offs?
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Seedling emergence was somewhat lower in the die-off at Dun
Glen, but survival and growth were significantly increased.
From Owen Baughman, MS thesis, University Nevada Reno, 2014



What Causes Die-offs?

Although there are many hypotheses regarding the

causes of cheatgrass die-offs, our research over the past

four years has produced strong evidence for the following
hypothesis:

Cheatgrass stand failure is caused by a
complex interaction among multiple
soilborne fungal pathogens.



Black Fingers of Death
Pyrenophora semeniperda
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This fungal pathogen attacks
seeds in the seed bank

Its primary prey is dormant
seeds in the persistent seed
bank

It has limited ability to kill
germinating seeds and
probably plays no direct role in
stand failure (die-off)

Stand recovery following die-
off is strongly influenced by
this pathogen, which can
sometimes kill >99% of the
seeds in the persistent seed
bank.




Fusarium Seed Rot
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Fusarium seed rot is caused
by one or more undescribed
species in the Tricinctum
group of the fungal genus
Fusarium. This disease is
believed to be the primary
cause of most cheatgrass

stand failure
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Bleach Blonde Syndrome

Bleach blonde syndrome is
a newly discovered disease
caused by an undescribed
taxon in the fungal family
Rutstroemiaceae. It appears to
set the stage for stand failure.




The Legacy of a Bleach Blonde Epidemic

Bleach blonde epidemic Stand failure
Year One Year Two




The Legacy of a Bleach Blonde Epidemic
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Soil Fungistasis and Die-off Cycles

The bleach blonde pathogen is activated by a specific
stimulus from the host roots at high host density.

The Fusarium seed rot pathogen is always present, but
it is suppressed by the soil microbial community at low
labile carbon (aka carbohydrate) levels, that is, through
the process of fungistasis.

A pulse of labile carbon can ‘wake up’ the Fusarium and
cause a die-off.

A possible source of this pulse of labile carbon is
carbohydrate-rich bleach blonde litter.

Post-die-off, the labile carbon is again tied up by the
microbial community, and disease levels drop
dramatically the following year.



Testing the Soil Fungistasis Hypothesis

Die-off near the Great Salt Lake - 2014



Can Adding Labile Carbon
Cause a Die-off?

Collected 40 ring microcosms, 20 each from recent die-off
and intact cheatgrass areas in Paradise Valley near
Winnemucca, Nevada in August 2014

Each ring was planted with 50 non-dormant pink-dyed
cheatgrass seeds

Half of the rings received a labile carbon addition and half did
not

All rings were watered to field capacity and incubated under
lights at room temperature for 7 days

Emerged seedlings were classified as large (ca.>3 cm long),
medium (1-3 cm long), or small (<1 cm long)

Unemerged seeds were excavated and placed in petri dishes
for 3 days.

Seeds were scored either as unemerged alive (germinated) or
unemerged dead.

Data were analyzed using two-way ANOVA for a randomized
design.



Die-off in a Dish?
Just Add Sugar

No added labile carbon Added labile carbon



Adding Labile Carbon to Ring Microcosms
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A Possible Tool for Restoration

If we can predict or manipulate disease in the field to
decrease cheatgrass competition in the context of
restoration seeding, this could make it possible to
restore large areas now dominated by near-
monocultures of this plant, which are commonly
considered impossible to seed successfully.

This would uncouple the restoration seeding process
from the post-fire rehabilitation process, which is
primarily undertaken for a different purpose (soil
stabilization).

In turn, this would permit a longer-term planning
window and a more restoration-focused approach,
resulting in a higher probability of seeding success.



Some Unanswered Questions

What combination of environmental and biotic
factors causes the complex spatial patterns of die-
off observed on the landscape?

Are there any other pathogens involved?

Can die-off probability be evaluated by
determining pathogen inoculum loads in the soil
using molecular genetic techniques?

Can die-offs be created by adding labile carbon,
and to what extent does this depend on the /in situ
pathogen load?
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The Use of Seed Enhancement Technologies
to Improve Sagebrush Establishment
Across an Elevation Gradient

April Hulet, Kirk Davies, and Matt Madsen

USDA-Agricultural Research Service | Burns, Oregon
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Sagebrush Restoration Methods

Aerial Seeding




Limited by Biotic and Abiotic constraints
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Seed Enhancement Technologies: Dr. Matt Madsen

Seed Pillows Seed Pellets




Extruded Seed Pillows

Ingredients Dough extrusion
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Cross cut pillows
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Madsen and Svejcar. U.S. Provisional Patent Application, 2012




Extruded Seed Pillows
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Extruded Seed Pellets

Fresh Pasta Machine Operations Manual
FOR MODELS:

TR/75C
TR/95
TRA10
TRDA10
Rosito & Bisani Imports Inc.




Extruded Seed Pellets

extruded
seed pellet




Extruded Seed Pellets
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Extruded Seed Pellets
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Restoring Sage-grouse Habitat after Fire:

Success of Different
Restoration Methods
across an

Elevation Gradient
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Restoring Sage-grouse Habitat after Fire:

Success of Different
Restoration Methods
3Cross an Broadcast Seeding and Packing
Elevation Gradient

Broadcast Seeding




Restoring Sage-grouse Habitat after Fire:

Success of Different

Restoration Methods
3Cross an Broadcast Seeding and Packing
Elevation Gradient

Broadcast Seeding

Seed Pillows




Restoring Sage-grouse Habitat after Fire:

Success of Different

Restoration Methods
3Cross an Broadcast Seeding and Packing
Elevation Gradient

Broadcast Seeding

Seed Pillows

Sagebrush Seedlings




Restoring Sage-grouse Habitat after Fire:

Success of Different

Restoration Methods
across an Broadcast Seeding and Packing
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Elevation Gradient Seed Pillows
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Restoring Sage-grouse Habitat after Fire:

Success of Different Photographer: kval.com
Restoration Methods

across an

Elevation Gradient
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Restoring Sage-grouse Habitat after Fire: PRISM data
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Restoring Sage-grouse Habitat after Fire: Preliminary Results
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Restoring Sage-grouse Habitat after Fire: Preliminary Results
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Restoring Sage-grouse Habitat after Fire: Preliminary Results
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Restoring Sage-grouse Habitat after Fire
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Questions




Simulation Modeling and Emerging Technologies for
Understanding and Prioritizing Management Actions
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The Next Steppe: Sage-grouse and
rangeland wildfire in the Great Basin
Boise,

November 6, 2014

Dr. Matt Reeves (USFS, RMRS, Research Ecologist)
Leonardo Frid (Apex RMS)




Simulation Modeling

Not going to discuss model theory

Explain our efforts to develop a quantitative model platform
for rangelands:

 Potential uses

» Limitations

» Development stage

 Policy, fire operations and science implications




Simulation Modeling:

Began in 2012; JFSP .‘ Similar to Forest

Vegetation Simulator

Disturbance

g S iy, A,

Prod t / st
4 modules o Deterministic and

biomass

Cd Y Stochastic components




Simulation Modeling:

X, Y

Composition

Structure

REME!

Design criteria (herbivory, herbicide, fire)

Fuels
1, 10, 100 hr

Fuel Loading Model
Surface Fire Behavior
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XML for FCCS

Production
Herbaceous
biomass

Shrub biomass

Annual production

Stem density
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Simulation Modeling:

X, Y

Composition

Structure

REME!

Design criteria (herbivory, herbicide, fire)
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Simulation Modeling:

X, Y
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Simulation Modeling:

Relative Ranking of Threats to Sage-Grouse in Idaho
(Idaho Sage-grouse Advisory Committee 2006)

1) Wildfire

2) Infrastructure

3) Annual Grassland

4) Livestock Impacts

5) Human Disturbance

6) West Nile Virus

7) Prescribed Fire

8) Seeded Perennial Grassland
9) Climate Change

10) Conifer Encroachment

11) Isolated Populations

12) Predation

13) Urban/Exurban Development
14) Sagebrush Control

15) Insecticides

16) Agricultural Expansion

17) Sport Hunting

18) Mines/Landfills/Gravel Pits
19) Falconry




Simulation Modeling:

Relative Ranking of Threats to Sage-Grouse in Idaho
(Idaho Sage-grouse Advisory Committee 2006)
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Simulation Modeling:

DeterministiC: what happens if “it” occurs? Stochastic: Will it occur? When where?
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Initialization Parameters \ = - . z
| 1]Sl.1m! location \ Tecaon sm;n;;h;zr S —_— — =
2) Species list: (structure and compostion ncluding invasive species) -114 Lon. ‘1’:"‘ gy R‘ No grazing. =" 1 e m | 50
| 3) Near-term climate (optional) | a6 Lat. PusidpiontyS 10 years post fire -
\ 4) Disturbance history: (grazing, fire, treatment etc.) | - | & e
: [ ek e oy | e -
‘ = )|
o l e S |
[ | =1
Estimate sueeession stage across the desired temporal domain Stage 1 Stage 2 g i
| ical § i 80% herb so%shub faf | Se8e3 o | {
1) Ecological Sites (disturbance response groups) 65% shrub | 2| -
2) Digitize STM's 20% shrub 20% herb : | -
' 3) Monte Carlo Simul; (prop of habitat P (Apex RMS) 4 {
Oisturbance (¢.g. fire); b | Byl Tewe sas emes | Lw Tagm GL s ‘
¥ = K e g - a s, .
Extraet site parameters from SSURGO Nan-forest Bl
1) Controls upper limits of total biomass production Soll moisture productivityexpected - "
2) Yields information regarding potential rates of capacity is high tabehigh (for iverage i . T
= Saning po! ' vear as indicatd in site | 3 il I
recovery parameter) Lr i
I SR } | |
[ r -
e 1 e LoeE o
big Sagebirush
Estimate biomass at each succession stage i+ oy e i |
1) Allometric equations R and Yield wd{ = 5
2) Use speci t, near term climate parameters, and production model to 2000 600 { pE— -
estimate herbaceous yield | slon o wbesra: R = a®m T
1000 o
| = km
===y
L P [ = e =
1ibem i B { L2 Fi
Extract fuelbed properties using biomass and succession stage Time lag/Fuel Size Uve Uve Fuslbed - = .
1) 1, 10, 100 hr time lag fuel Class (tVac) herbaceous  Woody  Depth
2) Total fuel loading Bl,\ n’i ”5""" . “;'
3) Live herbaceous fuel: more can always be added - —
2
K ) e [ 1
g Assign and classify fuels Chimate foracast Succerson Stage E = EE |
/1) Surface fire behavior fuel model (Scott and Burgan 2005; Anderson 1982) [Productivity = f
| 2) Fuel Loading Models (Lutes er al 2009) | :":Qu‘::; ok =
3) Fuel Characteristic Classification System (FCCS) fuelbeds 1 Sagel Soge? Soged
(Ottmar er al, 2007) [more herb dominated) (ol (more sheub i
herb & sheuk) | dominated) Vi Ll | s (e oy ] Dy
FBPM B/GR 1 FBFMB/GRY | FBFMS/SH3
FBFM 1/6R1 FOFMS/GS] | FBFMS/SH3 | S pre s = =
FBEM 1/GRI FOPMIGS2 | PRSI -

Research Direction:

Merge deterministic and stochastic modeling via
State-Transition Simulation



Simulation Modeling:

Many State-Transition modelling efforts now taking shape, especially in GB

Differing resolution; Differing knowledge base; Disparate goals




Simulation Modeling:

Many State-Transition modelling efforts now taking shape, especially in GB

Differing resolution; Differing knowledge base; Disparate goals

RVS Design
Reliability

Transparency

Consistency




Simulation Modeling:

Upland Gravelly Loam (Wyoming big sagebrush)

See attached
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RVS: Case Study
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RVS: Case Study
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RVS Ca.S' e 5 fU dy (No management)
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RVS Cas e 5 fU dy (No management)
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RVS: Potential Uses

1) Justification of stocking rates. Litigation (R3 USFS example)




RVS: Potential Uses

1)  Justification of stocking rates. Litigation (R3 USFS example)

Annual production?

Fuel loading?

Stocking rates justified?




RVS: Potential Uses

Justification of stocking rates. Litigation (R3 USFS example)
Prioritizing treatments in space and time

Estimating effectiveness of planned treatments

Quantifying fuels from inventory data
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RVS: Potential Uses

Justification of stocking rates. Litigation (R3 USFS example)
Prioritizing treatments in space and time

Estimating effectiveness of planned treatments

Quantifying fuels from inventory data

Interagency planning (Reliability, Transparency, Consistency)

Example Questions

a) What is the probability of seeding success across the landscape? Based on this, where and
when should we treat? How will seed pillow change this?

M control
O seed pillow

a

Seedling emergence (%)

A. millefolium A. tridentata




RVS: Potential Uses

Justification of stocking rates. Litigation (R3 USFS example)
Prioritizing treatments in space and time

Estimating effectiveness of planned treatments

Quantifying fuels from inventory data

Interagency planning (Reliability, Transparency, Consistency)

Example Questions
a) What is the probability of seeding success across the landscape? Based on this, where and
when should we treat?

b) Is it better to invest $100,000 up front to increase forb richness or $10,000 for 10 years?




RVS: Limitations

Many species have incomplete information
Lack of plot inventory

Ecological Sites are prototypical

Little or no calibration of ecological dynamics
Merging with Forest Vegetation Simulator



RVS: Development Stage

[ depts.washington.edu/nwiire/dps/

Site search

Digital Photo Series Home

Site broveser

Custom site builder

Calibration/Validation stage

5000

4000

3000

2000

Predicted annaul herbaceous
productivity (kg ha™) (Cross validation)

1000

2000 3000 4000 5000 6000

7000

Observed annual herbaceous biomass

(kg ha-1)")

Funding
available

g Wl 0C AN 4 FCCS
) \L\ - Digital
" : Fuelbeds

To display sites of interest, click on the maps above, or use the form below and click "Get sites."

State: |

Phote Series: | v v Ecoregion: |

Land owner: | v | Cover Type: |

‘ Species:

[General ¥ |[scisntific name ¥ | [ starts with ¥ || | [anc v | [General ¥ ||scisntific name ¥ || starts with ¥ ||

Measurement system: | English ¥ |

=7

‘ Quantitative measurements:

[ v][==]| | [Ancw] |

23 sites met the following criteria:

+ Volume = X: Montana

Volume X: Montana

SG: Sagebrush With Grass

Release




RVS: Policy, Fire Ops., Science

Policy

Consistent framework for justifying
Management

Prioritize budgets (where, when how)

Support policies for increasing quality of
sage grouse habitat

Enable evaluation of wild horse & burro
impacts

Comprehensive fuels data set

Identify “tipping” points

Optimize burn plans (achieve multiple objectives)

Positive feedback between BLM inventory and
implications for fire and fuel management
More precise estimates of fire severity and
behavior




Concluding Remarks

Simulation modelling mature enough to enable appropriate decisions

RVS is consistent, tfransparent, reliable

Provides feedback between BLM monitoring and fire management (Terrabdat)
Novel framework for bridging management and science gap

Bureau decisions often litigated; seek support of simulation;
rich rangeland information




