Health Effects of Wildfires

Jason Sacks
Senior Epidemiologist
Center for Public Health and Environmental Assessment
Office of Research and Development
US EPA

Public Information Officers Incident Management Response Roundtable
March 16, 2022

Chiwaukum Creek Wildfire 2014
Okanogan-Wenatchee National Forest
Photo Credit: https://ecology.wa.gov/
The views expressed during this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.
• Wildfire smoke and air quality
• Health effects & research needs
• Mitigating wildfire smoke exposure
• Information for public health officials, healthcare professionals, and the public

Source: Brianna Paciorka, Knoxville News Sentinel
Wildland Fire Smoke

Complex mixture

- Particulate matter
- Carbon dioxide
- Carbon monoxide
- Hydrocarbons
- Organic chemicals
- Oxides of nitrogen
- Trace minerals
- Water vapor

Lands End San Francisco, CA
Camp Fire November 2018
Picture by Wayne Cascio
What is Particulate Matter?

- Mixture of solid and liquid droplets
 - Primary particles emitted directly from a source (e.g., smokestacks, fires, construction sites)
 - Secondary particles produced through complex atmospheric reactions of chemicals (e.g., NO₂, SO₂) emitted by sources such as power plants, automobiles, etc.
- Particles defined by aerodynamic diameter
 - Fine particles (PM₂.₅), aerodynamic diameter ≤ 2.5 µm
 - Coarse particles (PM₁₀₋₂.₅), aerodynamic diameter > 2.5 µm and ≤ 2.5 µm
 - Ultrafine particles (UFPs), aerodynamic diameter ≤ 0.1 µm

Source: https://www.epa.gov/pm-pollution
Wildfire Smoke Emissions and PM$_{2.5}$

Pollutants in Wildfire Smoke

<table>
<thead>
<tr>
<th>Pollutant name</th>
<th>Category</th>
<th>Acronym or formula</th>
<th>Molecular weight</th>
<th>n</th>
<th>Mean EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td></td>
<td>C$_3$H$_4$O$_2$</td>
<td>60.052</td>
<td>153</td>
<td>2.13</td>
</tr>
<tr>
<td>Acetylene</td>
<td></td>
<td>C$_2$H$_2$</td>
<td>26.038</td>
<td>291</td>
<td>0.83</td>
</tr>
<tr>
<td>Ammonia</td>
<td>CAP, TOX</td>
<td>NH$_3$</td>
<td>17.031</td>
<td>216</td>
<td>1.55</td>
</tr>
<tr>
<td>Black carbon</td>
<td></td>
<td>BC</td>
<td>115</td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>GHG</td>
<td>CO$_2$</td>
<td>44.009</td>
<td>597</td>
<td>1549.98</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CAP</td>
<td>CO</td>
<td>28.010</td>
<td>640</td>
<td>103.51</td>
</tr>
<tr>
<td>Ethene</td>
<td>TOX</td>
<td>C$_2$H$_4$</td>
<td>28.054</td>
<td>261</td>
<td>1.10</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>HAP, TOX</td>
<td>H$_2$CO</td>
<td>30.026</td>
<td>204</td>
<td>1.59</td>
</tr>
<tr>
<td>Formic acid</td>
<td>TOX</td>
<td>HCOOH</td>
<td>46.025</td>
<td>192</td>
<td>0.33</td>
</tr>
<tr>
<td>Furane</td>
<td>TOX</td>
<td>C$_2$H$_2$O</td>
<td>68.075</td>
<td>179</td>
<td>0.34</td>
</tr>
<tr>
<td>Hydrogen cyanide</td>
<td>HAP, TOX</td>
<td>HCN</td>
<td>27.026</td>
<td>188</td>
<td>0.46</td>
</tr>
<tr>
<td>Methane</td>
<td>GHG</td>
<td>CH$_4$</td>
<td>16.043</td>
<td>451</td>
<td>5.53</td>
</tr>
<tr>
<td>Methanol</td>
<td>HAP, TOX</td>
<td>CH$_3$OH</td>
<td>32.042</td>
<td>219</td>
<td>1.44</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>CAP</td>
<td>NO</td>
<td>30.006</td>
<td>193</td>
<td>2.29</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>CAP</td>
<td>NO$_2$</td>
<td>46.005</td>
<td>160</td>
<td>1.26</td>
</tr>
<tr>
<td>Nitrogen oxides</td>
<td>CAP</td>
<td>NO$_x$</td>
<td>117</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>Nitrous acid</td>
<td>CAP</td>
<td>HNO$_2$</td>
<td>47.013</td>
<td>164</td>
<td>0.49</td>
</tr>
<tr>
<td>Non-methane hydrocarbons</td>
<td>CAP</td>
<td>NMHC</td>
<td>112</td>
<td>5.87</td>
<td></td>
</tr>
<tr>
<td>Particulate matter 2.5 μm</td>
<td>CAP</td>
<td>PM$_{2.5}$</td>
<td>337</td>
<td>27.87</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>HAP, TOX</td>
<td>C$_6$H$_5$O</td>
<td>94.113</td>
<td>137</td>
<td>0.71</td>
</tr>
<tr>
<td>Propene</td>
<td>TOX</td>
<td>C$_3$H$_6$</td>
<td>42.081</td>
<td>295</td>
<td>0.68</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>CAP</td>
<td>SO$_2$</td>
<td>64.058</td>
<td>127</td>
<td>1.11</td>
</tr>
<tr>
<td>Total particulate matter</td>
<td></td>
<td></td>
<td>289</td>
<td>23.57</td>
<td></td>
</tr>
</tbody>
</table>

n = # observations; EF = emissions factor

Where There is Smoke There is Illness

Wildfire smoke

Health effects

Wildfires

Inhaled particle deposition in the lung

Extrathoracic region

>10 µm

Nasal Cavity
Larynx

Tracheobronchial region

2.5 – 10 µm
(Coarse PM)

Trachea
Bronchi

Alveolar region

< 0.1 µm
(Ultrafine PM)

0.1 – 2.5 µm
(Fine PM)

Alveoli

Wildfire smoke components:
- Gases
- Volatile liquids
- Reactive metals
- Organic species
- Particles

Health effects:
- Inhaled particle deposition in the lung:
 - >10 µm
 - 2.5 – 10 µm (Coarse PM)
 - 0.1 – 2.5 µm (Fine PM)
 - < 0.1 µm (Ultrafine PM)
Health Effects of Wildfire Smoke

Decades of research on the health effects of ambient PM$_{2.5}$ exposures

- Studies provide extensive scientific evidence demonstrating a range of health effects due to both short-term (i.e., 1-hour to a month) and long-term (i.e., 1 month to years) exposures

Health Effects Associated with Wildland Fire Smoke

- All-cause mortality
- Asthma & chronic obstructive pulmonary disease (COPD) exacerbations
- Bronchitis & pneumonia
- Childhood respiratory disease
- Cardiovascular outcomes
- Adverse birth outcomes
- Symptoms such as eye irritation, sore throat, wheeze and cough

Source: Liu et al 2015; Reid et al. 2016; Cascio 2018
Health Effects of Wildfire Smoke: Epidemiologic Evidence

- **Exposure Assessment:** Different exposure indicators used across studies (e.g., wildfire-specific PM$_{2.5}$, smoke plume density)
- Associations generally consistent across studies regardless of exposure indicator
- Most studies focus on daily (24-h avg) exposures

- **Consistent, positive associations** across studies examining respiratory-related and asthma hospital admissions and ED visits
- Fewer studies examining cardiovascular outcomes and mortality

U.S.-based Epidemiologic Studies Examining the Relationship Between Short-term Wildfire Smoke Exposure and Combinations of Respiratory-Related Diseases and Asthma Hospital Admissions and Emergency Department Visits

Study Location Age Lag

- **Gan et al. (2017)a** Washington All 0
- **Gan et al. (2017)b** Washington All 0
- **Gan et al. (2017)c** Colorado All 0
- **Stowell et al. (2019)d,e** North Carolina (28 counties) 0-2
- **Tinling et al. (2016)** North Carolina (28 counties) 18+ 0,2DL
- **Hutchinson et al. (2018)** San Diego, CA 0,64 0.2 (72h MA)
- **DeFlorio-Barker et al. (2019)f** California All 0
- **DeFlorio-Barker et al. (2019)g** California All 0
- **DeFlorio-Barker et al. (2019)h** California All 0
- **Alman et al. (2016)** North Carolina (28 counties) 65+ 0
- **Reid et al. (2016)** Oregon 0
- **Gan et al. (2017)a** Washington All 0
- **Gan et al. (2017)b** Washington All 0
- **Gan et al. (2017)c** Colorado All 0
- **Gan et al. (2019)** Oregon All 0
- **Gan et al. (2020)** Oregon All 0
- **Gan et al. (2020)** Oregon All 0
- **Tinling et al. (2016)** North Carolina (28 counties) 18+ 0,2DL
- **Hutchinson et al. (2018)** San Diego, CA 0,64 0.2 (72h MA)
- **DeFlorio-Barker et al. (2019)f** California All 0
- **DeFlorio-Barker et al. (2019)g** California All 0
- **DeFlorio-Barker et al. (2019)h** California All 0
- **Alman et al. (2016)** North Carolina (28 counties) 65+ 0
- **Reid et al. (2019)** California All 0

Odds Ratio/Relative Risk

- **Asthma**

Legend:
- ● = studies that used smoke/wildfire PM$_{2.5}$ as the exposure indicator
- ○ = studies that used ambient PM$_{2.5}$ measurements as the exposure indicator

Solid circles = hospital admissions
Open circles = ED visits

Note: All risk estimates are for a 10 µg/m3 increase in PM$_{2.5}$ concentrations, except for Stowell et al. (2019), which are for a 1 µg/m3 increase.

Who’s At-Risk from Wildland Fire Smoke?

At-risk populations include:
- Older adults (i.e., > 65 years of age)
- Children
- People with respiratory disease
- People with cardiovascular disease
- Pregnant women and fetuses
- People of low socioeconomic status
- Outdoor workers

~30% of the U.S. population is at-risk

More recent evidence:
- Minority populations
- Populations with chronic inflammatory diseases (e.g., diabetes, obesity)

Source: U.S. EPA (2020), Integrated Science Assessment for Particulate Matter (PM ISA)
Health Effects of Wildfire Smoke: Uncertainties

Exposures < 24-hour average

• Potentially important from the standpoint of public health messaging

• Limited number of studies examining ambient PM$_{2.5}$, with most consisting of panel studies and controlled human exposure studies
 • Primarily examining subclinical effects (e.g., markers of inflammation), changes in heart and lung function
 • Recent wildfire study focusing on emergency ambulance dispatches reports an association with 1-h PM$_{2.5}$ exposure and respiratory and cardiovascular outcomes (Yao et al. 2020. Environ Health Perspect 128,6)

Exposures > 1 week

• Examined in firefighters (Adetona et al. 2016, Inhalation Tox 28:3, 95-139)
 • Focus on respiratory-related health effects
 • Some evidence that cumulative exposures (> 1 week) can lead to changes in lung function

• Increased risk of mortality in hemodialysis patients as cumulative exposures increase up to 30 days (Xi et al. 2020, JASN 31)
Repeated high exposures over a few days

Long-term health consequences of high exposure

- Initial evidence of a relationship between high wildfire smoke exposure:
 - Reductions in lung function in subsequent years (Orr et al. Toxics, 2020, 8, 53)
 - Increased risk of influenza during the following winter influenza season (Landguth et al. 2020, Environ Int. 139:105668)

Exposures over multiple fire seasons

- Particularly in communities that experience wildfire smoke exposure on a recurring basis

Changing wildfire smoke mixture and exposures

- Wildland-urban interface (WUI)
In studies examining wildfire smoke exposure there is high variability between studies, and within studies (between homes/filters) on the effectiveness of different actions.

- Studies examined whether people took actions to reduce exposures, not if health responses changed.
Main Actions that Individual People can Take to Reduce Wildfire Smoke Exposure

Source: Xu et al. (2020). N Engl J Med 2020; 383:2173-2181
• Public health outreach: helping the public understand how fires impact their health, including providing real-time information during fire events.
 • AirNow
 • Wildfire Smoke: A Guide for Public Health Officials
 • Smoke Sense App

• Preparedness resources
 • Clean Air Spaces
 • Respirator Use

• Information Clearinghouse: Smoke Ready Toolbox

• Continuing Medical Education (CME) Courses
 • Particle Pollution and Your Patients’ Health
 • Wildfire Smoke and Your Patients’ Health

• Research
 • How to improve community capacity and resiliency around smoke events
 • Community Health Vulnerability Index
 • How fires impact air quality
 • Monitoring Needs
• Extensive scientific evidence demonstrating the health effects of PM$_{2.5}$
 • While uncertainties remain with respect to the health effects of wildfire smoke for some exposure durations, clear evidence that PM$_{2.5}$ can lead to adverse health effects

• Actions and interventions can be instituted to reduce wildfire smoke exposure with proper health messaging and/or availability

• AQI, and other similar indices, can provide information to inform the public on wildfire smoke
Thank you

Jason Sacks
Senior Epidemiologist
Center for Public Health and Environmental Assessment
Office of Research and Development
U.S. Environmental Protection Agency

Email: sacks.jason@epa.gov