Health Effects of Wildfires

Jason Sacks Senior Epidemiologist Center for Public Health and Environmental Assessment Office of Research and Development US EPA

Public Information Officers Incident Management Response Roundtable March 16, 2022

Chiwaukum Creek Wildfire 2014 Okanogan-Wenatchee National Forest Photo Credit: <u>https://ecology.wa.gov/</u>

The views expressed during this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA.

Sepa

Outline

- Wildfire smoke and air quality
- Health effects & research needs
- Mitigating wildfire smoke exposure
- Information for public health officials, healthcare professionals, and the public

<u>Source</u>: Brianna Paciorka, Knoxville News Sentinel

€PA

Wildland Fire Smoke

Complex mixture

- Particulate matter
- Carbon dioxide
- Carbon monoxide
- Hydrocarbons
- Organic chemicals
- Oxides of nitrogen
- Trace minerals
- Water vapor

What is Particulate Matter?

• Mixture of solid and liquid droplets

EPA

- Primary particles emitted directly from a source (e.g., smokestacks, fires, construction sites)
- Secondary particles produced through complex atmospheric reactions of chemicals (e.g., NO₂, SO₂) emitted by sources such as power plants, automobiles, etc.
- Particles defined by aerodynamic diameter
 - Fine particles (PM_{2.5}), aerodynamic diameter ≤ 2.5 μm
 - Coarse particles (PM_{10-2.5}), aerodynamic diameter > 2.5 μm and ≤ 2.5 μm
 - Ultrafine particles (UFPs), aerodynamic diameter ≤ 0.1 μm

Source: <u>https://www.epa.gov/pm-pollution</u>

€PA

Wildfire Smoke Emissions and PM_{2.5}

Pollutants in Wildfire Smoke

Pollutant name	Category	Acronym or formula	Molecular weight	п	Mean EI
Acetic acid		$C_2H_4O_2$	60.052	153	2.13
Acetylene		C_2H_2	26.038	291	0.83
Ammonia	CAP, TOX	NH ₃	17.031	216	1.55
Black carbon		BC		115	0.96
Carbon dioxide	GHG	CO_2	44.009	597	1549.98
Carbon monoxide	CAP	CO	28.010	640	103.51
Ethene	TOX	C_2H_4	28.054	261	1.10
Formaldehyde	HAP, TOX	H ₂ CO	30.026	204	1.59
Formic acid	TOX	HCOOH	46.025	192	0.33
Furan	TOX	C_2H_4O	68.075	179	0.34
Hydrogen cyanide	HAP, TOX	HCN	27.026	188	0.46
Methane	GHG	CH_4	16.043	451	5.53
Methanol	HAP, TOX	CH ₃ OH	32.042	219	1.44
Nitric oxide	CAP	NO	30.006	193	2.29
Nitrogen dioxide	CAP	NO ₂	46.005	160	1.26
Nitrogen oxides	CAP	NO _x		117	3.36
Nitrous acid		HNO ₂	47.013	164	0.49
Non-methane hydrocarbons		NMHC		112	5.87
Particulate matter 2.5 µm	CAP	PM _{2.5}		337	27.87
Phenol	HAP, TOX	C ₆ H ₆ O	94.113	137	0.71
Propene	TOX	C_3H_6	42.081	295	0.68
Sulfur dioxide	CAP	SO_2	64.058	127	1.11
Total particulate matter		PM		289	23.57

Total PM_{2.5} Emissions in 2017 NEI (5.7 million tons)

Source: https://www.epa.gov/air-emissionsinventories/2017-national-emissionsinventory-nei-data

n = # observations; EF = emissions factor Source: Prichard et al. (2020). Int. J. Wildland Fire,

29, 132-147. Table 3.

Set EPA

Health Effects of Wildfire Smoke

HUMAN HEALTH EFFECTS							
ISA				Final PM ISA			
Indicator			Indicator	PM _{2.5}	PM _{10-2.5}	UFP	
Health Effect Category	Respiratory		Short-term exposure				
			Long-term exposure				
	Cardiovascular		Short-term exposure				
			Long-term exposure				
	Metabolic		Short-term exposure	*	*	*	
			Long-term exposure	*	*	*	
	Nervous System		Short-term exposure				
			Long-term exposure	*	*	*	
	ductive	Male/Female Reproduction and Fertility	Long-term				
	Repro	Pregnancy and Birth Outcomes	exposure				
	Cancer		Long-term exposure				
	Mortality		Short-term exposure				
			Long-term exposure				
	Causal Likely causal Suggestive Inadequate						

Decades of research on the health effects of ambient PM_{2.5} exposures

 Studies provide extensive scientific evidence demonstrating a range of health effects due to both short-term (i.e., 1-hour to a month) and long-term (i.e., 1 month to years) exposures

https://www.epa.gov/isa/integratedscience-assessment-isa-particulate-matter

SEPA

Health Effects Associated with Wildland Fire Smoke

- All-cause mortality
- Asthma & chronic obstructive pulmonary disease (COPD) exacerbations
- Bronchitis & pneumonia
- Childhood respiratory disease
- Cardiovascular outcomes
- Adverse birth outcomes
- Symptoms such as eye irritation, sore throat, wheeze and cough

Source: Liu et al 2015; Reid et al. 2016; Cascio 2018

SEPA

Health Effects of Wildfire Smoke: Epidemiologic Evidence

- Exposure Assessment: Different exposure indicators used across studies (e.g., wildfire-specific PM_{2.5}, smoke plume density)
 - Associations generally consistent across studies regardless of exposure indicator
 - Most studies focus on daily (24-h avg) exposures
- Consistent, positive associations across studies examining respiratory-related and asthma hospital admissions and ED visits
- Fewer studies examining cardiovascular outcomes and mortality

U.S.-based Epidemiologic Studies Examining the Relationship Between Short-term Wildfire Smoke Exposure and Combinations of Respiratory-Related Diseases and Asthma Hospital Admissions and Emergency Department Visits

Legend:

= studies that used smoke/wildfire
 PM_{2.5} as the exposure indicator
 = studies that used ambient PM_{2.5}
 measurements as the exposure
 indicator
 Solid circles = hospital admissions
 Open circles = ED visits

<u>Note</u>: All risk estimates are for a 10 μ g/m³ increase in PM_{2.5} concentrations, except for Stowell at al. (2019), which are for a 1 μ g/m³ increase.

Source: U.S. EPA (2021) – CAIF Report, https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=352824 10

Set EPA

Who's At-Risk from Wildland Fire Smoke?

At-risk populations include:

- Older adults (i.e., > 65 years of age)
- Children
- People with respiratory disease
- People with cardiovascular disease
- Pregnant women and fetuses
- People of low socioeconomic status
- Outdoor workers

Source: U.S. EPA (2019), Wildfire Smoke: A Guide for Public Health Professionals

More recent evidence:

- Minority populations
- Populations with chronic inflammatory diseases (e.g., diabetes, obesity)

Source: U.S. EPA (2020), Integrated Science Assessment for Particulate Matter (PM ISA)

~30% of the U.S. population is at-risk

SEPA

Health Effects of Wildfire Smoke: Uncertainties

Exposures < 24-hour average

- Potentially important from the standpoint of public health messaging
- Limited number of studies examining ambient PM_{2.5}, with most consisting of panel studies and controlled human exposure studies
 - Primarily examining subclinical effects (e.g., markers of inflammation), changes in heart and lung function
- Recent wildfire study focusing on emergency ambulance dispatches reports an association with 1-h PM_{2.5} exposure and respiratory and cardiovascular outcomes (Yao et al. 2020. Environ Health Perspect 128,6)

Exposures > 1 week

- Examined in firefighters (Adetona et al. 2016, Inhalation Tox 28:3, 95-139)
 - Focus on respiratory-related health effects
 - Some evidence that cumulative exposures (> 1 week) can lead to changes in lung function
- Increased risk of mortality in hemodialysis patients as cumulative exposures increase up to 30 days (Xi et al. 2020, JASN 31)

Health Effects of Wildfire Smoke: Uncertainties

Repeated high exposures over a few days

Long-term health consequences of high exposure

- Initial evidence of a relationship between high wildfire smoke exposure:
 - Reductions in lung function in subsequent years (Orr et al. Toxics, 2020, 8, 53)
 - Increased risk of influenza during the following winter influenza season (Landguth et al. 2020, Environ Int. 139:105668)
 - COVID-19 cases and deaths (Zhou et al. 2021, Sci Adv. Aug 13;7(33))

Exposures over multiple fire seasons

Particularly in communities that experience wildfire smoke exposure on a recurring basis

Changing wildfire smoke mixture and exposures

• Wildland-urban interface (WUI)

(https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=352824)

Main Actions that Individual People can Take to Reduce Wildfire Smoke Exposure

Mos effect	st ive	Personal Actions	Limitations or Concerns		
	Elimination Reduces exposure by 100%	Relocation	Relocation increases costs and stress and has unpredictable duration. Wildfire particulate matter and ozone may extend thousands of kilometers. Relocation may not be feasible.		
	Engineering controls Reduce exposure by 20 to 90%, depending on quality of filters or air cleaners	lose doors and windows et air conditioners in recirculation mod Jse portable air cleaners with HEPA filte or central air conditioner with filters	e Effectiveness varies greatly with ventilation and filtration rates. Most filters reduce only particulate matter and not gaseous pollutants (e.g., ozone). Cost is prohibitive for some.		
	Administrative controls Reduce exposure by approximately 50%	Stay indoors Avoid heavy or prolonged physical activity	Strategies are less effective for "leaky" houses. Exposure to indoor air pollution (e.g., cooking smoke and aldehydes from paints and furnishings) is increased. Insufficient physical activity may lead to adverse health effects. Strategies are impractical for outdoor workers.		
	Personal protective equipment Reduces exposure by ≥90% if well fitted but nearly 0% if poorly fitted	Wear a face mask Effective Masks c Masks r and a	tain face masks (e.g., N95 or P100) can reduce exposure to particulate matter. ness depends on fit, and fit testing is not generally available. annot protect against gaseous pollutants. nay provide a false sense of security and thus increase outdoor time ctual exposure.		
effective		Masks r and c Masks a or he Cost is	Masks may cause physical stress due to increased work of breathing, heat, and discomfort. Masks are not suitable for children, people with facial hair, and those with lung or heart diseases. Cost is prohibitive for some.		

SEPA

EPA Plays a Supportive Role

- **Public health outreach**: helping the public understand how fires impact their health, including providing real-time information during fire events.
 - <u>AirNow</u>
 - <u>Wildfire Smoke: A Guide for Public Health</u>
 <u>Officials</u>
 - <u>Smoke Sense App</u>
- Preparedness resources
 - <u>Clean Air Spaces</u>
 - <u>Respirator Use</u>
- Information Clearinghouse: <u>Smoke Ready Toolbox</u>
- Continuing Medical Education (CME) Courses
 - Particle Pollution and Your Patients' Health
 - Wildfire Smoke and Your Patients' Health
- Research
 - How to improve community capacity and resiliency around smoke events
 - <u>Community Health Vulnerability Index</u>
 - How fires impact air quality
 - Monitoring Needs

Courtesy of Erika Sasser, OAR

*₽***EPA**

Summary

- Extensive scientific evidence demonstrating the health effects of PM_{2.5}
 - While uncertainties remain with respect to the health effects of wildfire smoke for some exposure durations, clear evidence that PM_{2.5} can lead to adverse health effects
- Actions and interventions can be instituted to reduce wildfire smoke exposure with proper health messaging and/or availability
- AQI, and other similar indices, can provide information to inform the public on wildfire smoke

Thank you

Jason Sacks Senior Epidemiologist Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency

Email: sacks.jason@epa.gov